max, $t_{OFF} = 30$ ns max).

Power Routing

Λ Λ Χ Λ Ο.5Ω, Low-Voltage, Single-Supply SPST Analog Switches

General Description

Applications

The MAX4626/MAX4627/MAX4628 are low-on-resis-

tance, low-voltage, single-pole/single-throw (SPST)

analog switches that operate from a +1.8V to +5.5V sin-

gle supply. The MAX4626 is normally open (NO), and

the MAX4627 is normally closed (NC). The MAX4628 is normally open (NO) and has two control inputs. These

devices also have fast switching speeds ($t_{ON} = 50$ ns

When powered from a +5V supply, the MAX4626/

MAX4627/MAX4628 offer 0.5Ω max on-resistance

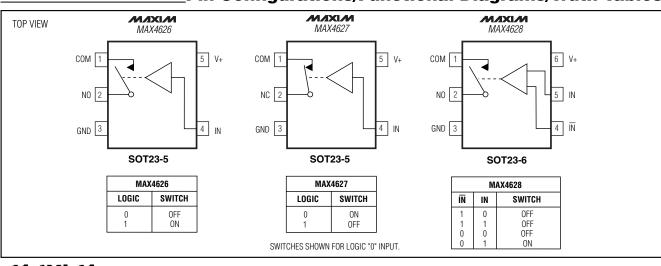
(RON) with 0.1Ω max RON flatness, and their digital logic inputs are TTL compatible. These switches also

feature overcurrent protection to prevent device dam-

The MAX4626 is pin compatible with the MAX4514, and the MAX4627 is pin compatible with the MAX4515. The MAX4626/MAX4627 are available in SOT23-5 packages; the MAX4628 is available in a SOT23-6 package.

age from short circuits and excessive loads.

Features


- Low R_{ON}
 0.5Ω max (+5V Supply)
 0.9Ω max (+3V Supply)
- ♦ 0.1Ω max Ron Flatness (+5V Supply)
- Overcurrent Protection
- Single-Supply Operation (+1.8V to +5.5V)
- Available in SOT23 Packages
- Fast Switching: ton = 50ns max, torF = 30ns max
- ◆ TTL-Logic Compatible at +5V
- Pin Compatible with MAX4514 (MAX4626)
 Pin Compatible with MAX4515 (MAX4627)

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4626EUK-T	-40°C to +85°C	5 SOT23-5	ADMJ
MAX4627EUK-T	-40°C to +85°C	5 SOT23-5	ADMK
MAX4628EUT-T	-40°C to +85°C	6 SOT23-6	AADN

MAX4626/MAX4627/MAX4628

Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits PCMCIA Cards Cellular Phones Modems Hard Drives

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Pin Configurations/Functional Diagrams/Truth Tables

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

Tontagee Herereneed to en te	
V+, IN, TN	0.3V to +6V
NO, NC, COM (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current NO, NC to COM	±400mA
Peak Switch Current NO, NC to COM	
(pulsed at 1ms, 10% duty cycle max)	±800mA
Continuous Power Dissipation ($T_A = 70^{\circ}C$)	
5-Pin SOT23-5 (derate 7.1mW/°C above -	+70°C)571mW
6-Pin SOT23-6 (derate 7.1mW/°C above -	+70°C)571mW

Operating Temperature Range

MAX462_EU	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NC, NO, or COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V + = +5V \pm 10\%, GND = 0, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS	
ANALOG SWITCH	•	1	ł				•	
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance	Davi	$V_{+} = 4.5V,$ $V_{NO} \text{ or } V_{NC} = 3.5V,$ $I_{COM} = 100\text{mA}$	$T_A = +25^{\circ}C$		0.35	0.5	- Ω	
On-Resistance	R _{ON}		$T_A = T_{MIN}$ to T_{MAX}			0.6		
On-Resistance Flatness		V+ = 4.5V; VCOM = 0, 1V,	$T_A = +25^{\circ}C$		0.05	0.10		
(Note 4)	RFLAT(ON)	2V; I _{COM} = 100mA	$T_A = T_{MIN}$ to T_{MAX}			0.10	Ω	
NO or NC Off-Leakage	INO(OFF),	$V + = 5.5V; V_{COM} = 1V, 4.5V;$	$T_A = +25^{\circ}C$	-2	0.2	2		
Current	INC(OFF)	$V_{NO} \text{ or } V_{NC} = 4.5 \text{V}, 1 \text{V}$	$T_A = T_{MIN}$ to T_{MAX}	-20		20	nA	
COM Off-Leakage		$V_{\rm H} = 5.5V; V_{\rm COM} = 1V, 4.5V; \\ V_{\rm NO} \mbox{ or } V_{\rm NC} = 4.5V, 1V$	$T_A = +25^{\circ}C$	-2	0.2	2	nA	
Current	ICOM(OFF)		$T_A = T_{MIN}$ to T_{MAX}	-20		20		
COM On-Leakage Current	ICOM(ON)	$\label{eq:V+} \begin{array}{l} V+=5.5V; \ V_{COM}=1V, \ 4.5V; \\ V_{NO} \ or \ V_{NC}=1V, \ 4.5V, \ or \\ floating \end{array}$	$T_A = +25^{\circ}C$	-4	0.3	4	nA	
			$T_A = T_{MIN}$ to T_{MAX}	-40		40		
Overcurrent-Protection Threshold Current		$T_A = +25^{\circ}C$			2.4		A	
DYNAMIC								
T	ton	V_{NO} or $V_{NC} = 3V$, Figure 2	$T_A = +25^{\circ}C$		40	50		
Turn-On Time		$v_{NO} \text{ or } v_{NC} = 3v, \text{ Figure 2}$	$T_A = T_{MIN}$ to T_{MAX}			60	– ns	
Turn-Off Time	torr	VNO or VNC = 3V, Figure 2	$T_A = +25^{\circ}C$		18	30		
Turn-Off Time tOFF		$V_{NO} OI V_{NC} = 3V$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			40	— ns	
Charge Injection	Q	C _L = 1.0nF, V _{GEN} = 0, R _{GEN} = 0, T _A = +25°C, Figure 3			40		рС	
Off-Isolation (Note 5)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, T _A = +25°C, Figure 4		-51		dB	
COM Off-Capacitance	CCOM(OFF)	$f = 1MHz$, $T_A = +25^{\circ}C$, Figure 5			65		pF	
NC or NO Off- Capacitance	COFF	$f = 1MHz$, $T_A = +25^{\circ}C$, Figure 5			65		pF	
COM On-Capacitance	CCOM(ON)	$f = 1MHz$, $T_A = +25^{\circ}C$, Figure 5			130		рF	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

(V+ = +5V \pm 10%, GND = 0, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LOGIC INPUT	I					1
Input Voltage Low	VINL				0.8	V
Input Voltage High	VINH		2.4			V
Logic Input Current	lin		-1		1	μA
SUPPLY	I.					
Power-Supply Range	V+		1.8		5.5	V
Positive Supply Current	l+	$V_{+} = 5.5V, V_{IN} = 0 \text{ or } V_{+}$			10	μA

ELECTRICAL CHARACTERISTICS—Single +3V Supply

(V+ = +2.7V to +3.6V, GND = 0, VINH = 2.0V, VINL = 0.6V, TA = TMIN to TMAX, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH		I		1			
Analog Signal Range	V _{COM} , V _{NO} , VNC			0		V+	V
On Desistance		$V_{+} = 2.7V,$ $V_{NO} \text{ or } V_{NC} = 1.5V,$ $I_{COM} = 100\text{mA}$	T _A = +25°C		0.4	0.8	
On-Resistance	R _{ON}		$T_A = T_{MIN}$ to T_{MAX}			0.9	- Ω
On-Resistance Flatness (Note 4)	RFLAT(ON)		V+ = 2.7V; I_{COM} = 100mA; V _{NO} or V _{NC} = 0, 0.75V, 1.5V; T_A = +25°C		0.1		Ω
DYNAMIC	·						
Turn-On Time	ton	V _{NO} or V _{NC} = 1.5V, Figure 2	$T_A = +25^{\circ}C$		65	80	- ns
rum-on nine			$T_A = T_{MIN}$ to T_{MAX}			90	115
Turn-Off Time	toff	V_{NO} or V_{NC} = 1.5V, Figure 2	$T_A = +25^{\circ}C$		22	40	200
			$T_A = T_{MIN}$ to T_{MAX}			50	- ns
Charge Injection	Q	$C_L = 1.0nF$, Figure 3, $V_{GEN} = 0$, $R_{GEN} = 0$, Ta = +25°C			30		рС
LOGIC INPUT	I	I					1
Input Voltage Low	VINL					0.6	V
Input Voltage High	Vinh			2.0			V
Logic Input Current	IIN			-1		1	μA
SUPPLY							1
Positive Supply Current	+	$V = +3.6V, V_{IN} = 0$				10	μA

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: SOT-packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.

Note 5: Off-Isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

ON-RESISTANCE vs. COM VOLTAGE ON-RESISTANCE vs. COM VOLTAGE TURN-ON/OFF TIMES OVER SUPPLY VOLTAGE OVER TEMPERATURE vs. SUPPLY VOLTAGE 0.6 60 3.0 V + = 5V $I_{COM} = 100 \text{mA}$ I_{COM} = 100mA 2.5 0.5 50 Vcc = +1.8V T_A = +105°0 40 2.0 0.4 ton/torF (ns) $R_{ON}(\Omega)$ $V_{CC} = +2.0V$ ton $R_{0N}(\Omega)$ $I_{A} = +85$ 0.3 1.5 30 -40°($T_{A} = +25^{\circ}$ 1.0 0.2 20 V_{CC} = +2.3V $T_A = -55^{\circ}C$ $V_{CC} = +2.5V$ $V_{CC} = +3.0V - V_{CC} = +5V$ 0.1 0.5 10 torr 0 0 0 0 2 3 5 0 2 3 4 5 2 3 1 4 1 4 5 V_{COM} (V) V_{COM} (V) V_{SUPPLY} (V) **ON/OFF-LEAKAGE CURRENT TURN-ON/OFF TIMES** vs. TEMPERATURE vs. TEMPERATURE **CHARGE INJECTION vs. COM VOLTAGE** 10 100 120 $V_{+} = 5V$ $V_{NO} \text{ or } V_{NC} = 3V$ 100 80 1 ON/OFF-LEAKAGE (nA) 80 ton/torr (ns) 60 Q (pC) ton 0.1 60 40 40 0.01 20 20 tOFF 0.001 0 0 -20 60 80 -40 -20 0 20 40 60 80 100 2 3 4 -40 0 20 40 0 1 TEMPERATURE (°C) TEMPERATURE (°C) V_{COM} (V) LOGIC THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE **FREQUENCY RESPONSE** 6/7/8-07 0 10 2.5 0 -10 -OGIC THRESHOLD VOLTAGE (V) 2.0 -10 -20 ON-PHASE VIN RISING -30 -20 (degrees) LOSS (dB) 1.5 -30 -40 ISÓLÁTIÓN PHASE (-50 -40 1.0 VIN FALLING -60 -50 -70 -60 0.5

-70

-80

100M

0

2

3

5

4

SUPPLY VOLTAGE (V)

6

V + = 5V $50\Omega = IN/OUT$

10M

1M

FREQUENCY (Hz)

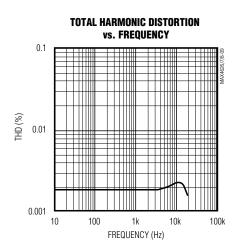
Typical Operating Characteristics

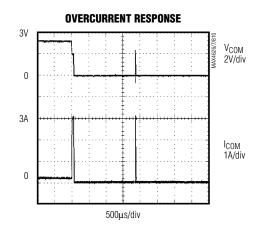
MIXIM

6

5

-80


-90


30k 100k

MAX4626/MAX4627/MAX4628

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

_Pin Description

	PIN		NAME	FUNCTION	
MAX4626	MAX4627	MAX4628		FONCTION	
1	1	1	COM	Analog Switch—Common	
2	—	2	NO	Analog Switch—Normally Open	
3	3	3	GND	Ground	
4	4	5	IN	Digital Control Input	
5	5	6	V+	Positive Supply Input	
_	2	_	NC	Analog Switch—Normally Closed	
—	—	4	ĪN	Inverted Digital Control Input (see MAX4628 Truth Table)	

Detailed Description

The MAX4626/MAX4627/MAX4628 are low-on-resistance (R_{ON}), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.8V to +5.5V single supply. The MAX4626 is normally open (NO), and the MAX4627 is normally closed (NC). The MAX4628 is normally open (NO) and has two control inputs.

When powered from a +5V supply, their 0.5Ω R_{ON} allows high continuous currents to be switched in a variety of applications. In the event of an overcurrent condition, these switches provide both current-limit and thermal-shutdown protection.

Current-Limit Protection

The MAX4626/MAX4627/MAX4628 feature current-limit protection circuitry. When the voltage drop across the on switch reaches 0.6V (typ), the internal circuitry activates. The current limit is not instantaneous, but rather integrates over time so that current limiting will not activate under momentary short-circuit conditions encountered when the switch output charges a small 0.1μ F capacitor. For sustained overcurrent conditions, the switch turns off (opens). The switch turns on after 5ms and, if the overload condition persists, the switch will cycle off and on to produce a pulsed output. A direct short circuit will be detected immediately, and the switch will pulse on for 1µs, then remain off for 5ms.

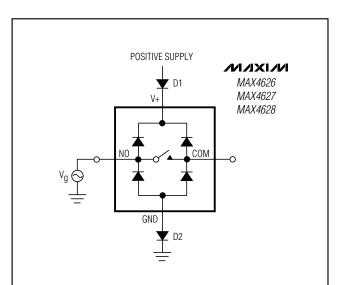


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Applications Information

Logic Inputs

The MAX4626/MAX4627/MAX4628 logic inputs can be driven up to +5.5V regardless of the supply voltage. For example, with a +3.3V supply, IN or $\overline{\rm IN}$ may be driven low to 0V and high to 5.5V. Driving IN or $\overline{\rm IN}$ Rail-to-Rail[®] minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings; stresses beyond the listed ratings may cause permanent damage to the devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7V) below V+ (for D1), and a diode drop above ground (for D2). On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed +6V.

Adding protection diode D2 causes the logic thresholds to be shifted relative to GND. TTL compatibility is not guaranteed when protection diode D2 is added.

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

_Test Circuits/Timing Diagrams

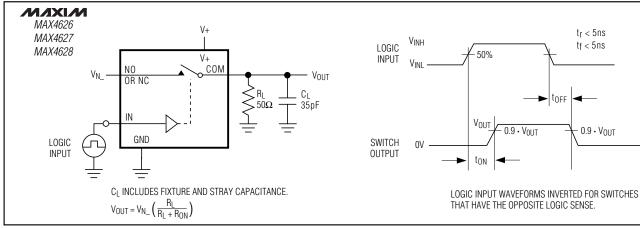
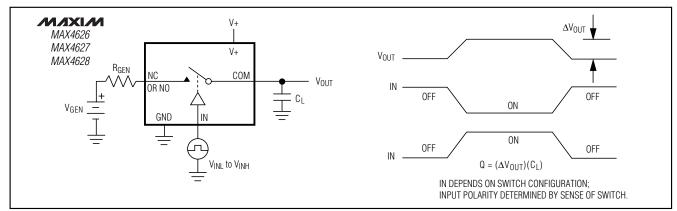



Figure 2. Switching Time

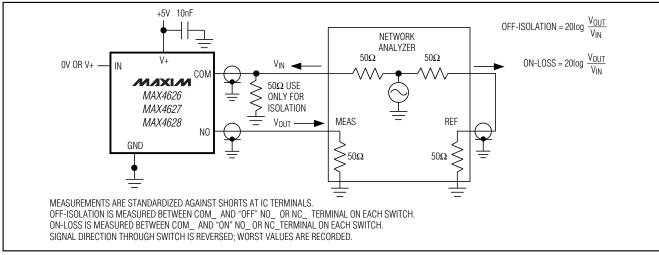


Figure 4. On-Loss and Off-Isolation

MAX4626/MAX4627/MAX4628

V4 ΜΙΧΙΜ 10nF MAX4626 MAX4627 MAX4628 V+ СОМ IN VINL OR CAPACITANCE Vinh METER NC or NO f = 1MHz GND 1

Figure 5. Channel Off/On-Capacitance

h

TRANSISTOR COUNT: 186

Α

A1

<u>А2</u> b

С

D

<u>Е</u> Е1 0.90

0.00

0.90

0.35

0.08

2.80

2.60 1.50

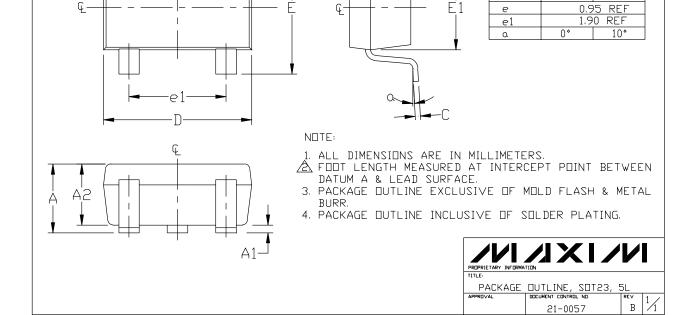
0.35

1.45

0.15

1.30

0.50


0.20

3.00

3.00 1.75

0.55

Chip Information

0.20

"∀"

DATUM

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

8

Printed USA is a register

is a registered trademark of Maxim Integrated Products.